Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Amphibole and pyroxenes are the main reservoirs of rare earth elements (REEs) in the lithospheric mantle that has been affected by hydrous metasomatism. In this study, we developed semi-empirical models for REE partitioning between orthopyroxene and amphibole and between clinopyroxene and amphibole. These models were formulated on the basis of parameterized lattice strain models of mineral-melt REE partitioning for orthopyroxene, clinopyroxene, and amphibole, and they were calibrated using major element and REE data of amphibole and pyroxenes in natural mantle samples from intraplate settings. The mineral-melt REE partitioning models suggest that amphibole is not in equilibrium with coexisting pyroxenes in the mantle samples and that the amphibole crystallized at a lower temperature than that of the pyroxenes. We estimated the apparent amphibole crystallization temperature using major element compositions of the amphibole and established temperature- and composition-dependent models that can be used to predict apparent pyroxene-amphibole REE partition coefficients for amphibole-bearing peridotite and pyroxenite from intraplate lithospheric mantle. Apparent pyroxene-amphibole REE partition coefficients predicted by the models can be used to infer REE contents of amphibole from REE contents of coexisting pyroxenes. This is especially useful when the grain size of amphibole is too small for trace element analysis.more » « less
-
Earth’s status as the only life-sustaining planet is a result of the timing and delivery mechanism of carbon (C), nitrogen (N), sulfur (S), and hydrogen (H). On the basis of their isotopic signatures, terrestrial volatiles are thought to have derived from carbonaceous chondrites, while the isotopic compositions of nonvolatile major and trace elements suggest that enstatite chondrite–like materials are the primary building blocks of Earth. However, the C/N ratio of the bulk silicate Earth (BSE) is superchondritic, which rules out volatile delivery by a chondritic late veneer. In addition, if delivered during the main phase of Earth’s accretion, then, owing to the greater siderophile (metal loving) nature of C relative to N, core formation should have left behind a subchondritic C/N ratio in the BSE. Here, we present high pressure-temperature experiments to constrain the fate of mixed C-N-S volatiles during core-mantle segregation in the planetary embryo magma oceans and show that C becomes much less siderophile in N-bearing and S-rich alloys, while the siderophile character of N remains largely unaffected in the presence of S. Using the new data and inverse Monte Carlo simulations, we show that the impact of a Mars-sized planet, having minimal contributions from carbonaceous chondrite-like material and coinciding with the Moon-forming event, can be the source of major volatiles in the BSE.more » « less
An official website of the United States government
